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PREDICTION (Regression/Classification)

y = outcome/response variable
x = {x1, -, xn} predictors
Goal: 3§ = F(x)

Want good F'(x)



ACCURACY

Cost for error:  L(y, F)

Ly, F)=(y—F)* ly-F| ye€eR
ye{-1,1}:
L(y, F) = log(1 + e ¥F) logistic reg.
L(y, F) = (1 —yF)+ SVM
any — log (likelihood)

many many more



Lack of accuracy (“risk”):
R(F) = ExyL(y, F(x))
Optimal (“target”) function:
F* = argminp R(F)
Don't know p(x, y)
Learning: T = {Xi,yi}i\[ “training” sample

F'(x) = learning procedure (1) ~ F™*(x)



ENSEMBLE LEARNING

F(x) =ag+ XM | amfm(x)

{fm(x)}{w = basis functions ( “base learners”)
Base learner: fin(x) = f(X;Py,)

{f(x; P)}pep = function class

Methods differ: choice f(x;p)

select: {fm(X)}{W C {f(x;P)}pepP

determine: {am}}!



GENERIC ENSEMBLE GENERATION PROC. (EGP)

Fp(x) = 0
Form=1to M {
Pm = arg minp
>ieSm(n) LWis Fm—1(X;) + f(%i: p))
fm(x) = f(x; pm)
Fin(x) = Frp—1(x) + v+ fm(x)
¥

ensemble = { £, (x)}M



EGP CONTROL PARAMETERS (FP 2003)

Sm(n) = random subsample of size n < N
n | = ensemble diversity T and comp. |
Auxiliary “memory” function: step m
Frn-1(x) = v+ 272" fel(x)
retains info {fk(x)}T_l

0 <v <1= "memory control” parameter



POPULAR ENSEMBLE METHODS

Bagging: L(y,9) = (y—9)% v=0 n=N/2
ap =0, {am =1/M}! = simple average

Random forests: bagging with randomized trees

AdaBoost: y € {—1,1}; L(y,9) = exp(—y - 4)
v=1and n =N, § = sign(Fys(x))

MART (TreeNet): arbitrary y and L(y, §)

Defaults: v = 0.1, n=N/2, § = Fy(x)



ISLE (FP 2003): F(x) = ag + > M_; amfm(x)
Lasso regression y on {fm(x)}]y:

A M :
{am}y" = arg ming, M

SN L (yz ao+ XM, amfm(xz')>
A Xy lam|
A T = more shrinkage and diversity of {| am |}{W
with many am = 0 (selection effect)

estimated by cross—validation

EGP: (n,v) = small: v ~0.01, n~+/N



Almost all ensemble learning implementations:
Base learners: f(x; p) = decision trees
p = splitting variables and value subsets
defining branches
Reasons:
Desirable data mining properties
Accuracy helped the most

Fast (approximate) algorithms



Here base learners = RULES

J(m) C {CC]_,ZUQ, o '7xn}

sjm = subset of values of z; € J(m)

fm(x) =rm(x) = ][ I(zj € sjm) € {0,1}
jeJ(m)

{x]}jEJ(m) “define” Tm(X)



EXAMPLE

( 1(18 < age < 34)
rm(x) = < -I(marital status € {single, living together
—not married})
| -I(householder status = rent)

— 1 = greater odds of visiting bars & night clubs



RULE GENERATION

fxipm)= ]| I(z; € sjm) in EGP too slow
jeJ(m)

(combinatorial optimization at each step)
Fast algorithms for decision trees =

f(x;p) = T(x; p) = decision tree in EGP

harvest rules from resulting {Tm(x)}{w

All tree nodes (interior and terminal) represent rules



r1(x) = I(x14 < u)

re(x) = I(t < x14 <) - I(z32 ¢ {a,b,c})
r7(x) = I(z14 > u) - I(z7 = 2).



All such rules derived from all trees {Tm(x)}]lw
constitute the rule ensemble {rj(x)}*
M = large = K = much larger
Model: F(x) = g + 1% ; aprp(x)
{&k}(%{ = lasso regression (y on {rk(x)}f)
Lasso selection effect =

most (~80% — 90%) dj = 0



LINEAR BASIS fUNCTIONS

Linear targets F™*(x) = bg + Z;-”Zl bix;
most difficult for rules (and trees)

= include {z;}7 in ensemble



RULE BASED INTERPRETATION

F(x) = linear model in {ry(x)} & {z;}
Both rules and linear terms easy to interpret
Examine most important terms for interpretation

Linear model:

Rule importance: I, = | ag | - \/sk(l — Sk)
Sp. = support = ave(r(x))

Linear importance: I; = |8¢7 | - std(z;)



LOCAL IMPORTANCE

X = prediction point € X

Rules: Ij(x) = |ag | - [rx(x) — sk |
Linear: Ij(x;) = |b; |- |z; — Zj]
Change in |F(x) | when coefficient — 0

Note: ave. (rms) over x = standard global measures

Average over S C X



INPUT VARIABLE IMPORTANCE

Most important variables are those that define
most important terms (rules or linear)
Importance of x; at x:
Jj(x) = Ij(x5) + 2o ery, Te(X)/my,
I;(x;) = importance of x; linear term
I1(x) = importance of kth rule (containing x;)
my. = # variables defining kth rule

Average over X C S



PARTIAL DEPENDENCE FUNCTIONS

Xs = selected subset of input variables
indexed by s C {1,2,---,n}; x = (Xs,X\g)
Partial dep. on x5: Fs(xs) = EX\S[F(XS,X\S)]
Estimate:  Fs(xs) = % SN | F(xs, X\ s)
{X,L-\S}N = data values of x,
Used (Friedman 2001) to view dep. of F'(x)

on Xg accounting for ave. effects of X\ g



INTERACTION EFFECTS

F'(x) has interaction between x; & xj,
= F(zj|x\;) — F(z) | x\ ;) depends on zy,

O2F(x)
8$j 8$k

2
Fx [ ] > 0 (cat. = finite diff.)



If no interaction between x; & xy;:
F(x) = fi;(x\;) + Ar(x\)
Partial dep.: ij(xj, xr) = FJ(ZIZJ) + Fi.(xy)

ngk = ave[ﬁjk(l’j, TE) — ﬁj(l’j) - ﬁk(xk)]z

/ave[ﬁ’j-2k(:cj, xi)]



If z; interacts with NO other variable:
F(x) = fj(:cj) + f\j(x\j) (additive)
F(x) = Fj(z;) + F\ ;(x\5)

Fj(x;) = partial dep. on x;
F\ j(x\ ;) = partial dep. on x;

H? = ave[F(x) — Fj(x;) — B\ ;(x\;,)]? /ave[F?(x)]



F'(x) has three—variable interaction among T, T, & 7

3 2
if Ex [aai 81;(/:(5)95’31} > 0 (cat. = finite diff.)

If no three—variable interaction among x;, xy, & x;:
F(x) = fi(xy;) + ArExg) + fulxyg)
Fipi(xg, g, 1) = Fip(), o) +F(x ), ©1)+Fr(Tg, )

—Fj(z;) — Fi(zg) — Fi(z)

kal = ave[LHS — RHS|?/ave[LH S?]



STRATEGY

(1) identify important input variables

(2) among these use H to identify which
are interacting with others

(3) for each interacting x; use { H }j; to
identify {z} with which it interacts

(4) use Hjy, to check for 3 — variable interactions

(5) view relevant partial dependence plots



ILLUSTRATION

Defaults:
v =0.01, 7 = min(N/2,100 + 6/N)
Ave. tree size L = 4 terminal nodes
M = 333 trees = K ~ 2000 rules

+ linear terms



BOSTON HOUSING DATA

N = 506 neighborhoods in the Boston metropolitan area
14 summary statistics were collected in each

y = median house value

x = 13 other (predictor) variables

RuleFit model: 215 terms (rules+ linear)

Relative average absolute error (50—fold X-val)

Full Additive Linear
Prediction 0.33 0.37 0.49



Imp.
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Boston housing data: most important rules

Coeff
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Sup.

0.01

0.23
0.88

0.05

Rule

linear: LSTAT

linear: AGE

DIS <14 & PTRATIO > 17.9
& LSTAT < 10.5

RM >6.62 & NOX < 0.67

RM < 7.45 & DIS > 1.37

RM >7.44 & PTRATIO < 17.9
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Interaction strength

Boston housing - interactions
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Boston housing - interactions with RM

£ 0.20
(@)
c
2 0.15
(%)
c
S 0.10
Q
©
% 0.05 —
T o0 HE_ _ oom o omm B e e D O e
m =
= % %2 5 8 2 2 %2 " &
> 2 5 2 < £ = I 5
= Variable o —
o
Boston housing - interactions with LSTAT
< 0.20 —
2
© 0.15
»
S 0.10
IS
o
[
0.00 = __——-E-_
=z n 0 x L n () > m
% N - < ) E G =) << < c,:)
= Variable fC
o

H j; = no 3-var. interactions involving RM or LSTAT



Partial dependence

Partial dependence
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