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Lots and lots of large data!

• DNA micro-array data and DNA SNP data

• High energy physics experimental data

• Hyper-spectral medical and astronomical image data

• Term-document data

• Medical literature analysis data

• Collaboration and citation networks

• Internet networks and web graph data

• Advertiser-bidded phrase data

• Static and dynamic social network data



Networks and networked data

Interaction graph model of
networks:
• Nodes represent “entities”
• Edges represent “interaction”
between pairs of entities

Lots of “networked” data!!
• technological networks

– AS, power-grid, road networks

• biological networks
– food-web, protein networks

• social networks
– collaboration networks, friendships

• information networks
– co-citation, blog cross-postings,
advertiser-bidded phrase graphs...

• language networks
– semantic networks...

• ...



Algorithmic vs. Statistical Perspectives

Computer Scientists
• Data: are a record of everything that happened.
• Goal: process the data to find interesting patterns and associations.
• Methodology: Develop approximation algorithms under different
models of data access since the goal is typically computationally hard.

Statisticians
• Data: are a particular random instantiation of an underlying process
describing unobserved patterns in the world.
• Goal: is to extract information about the world from noisy data.
• Methodology: Make inferences (perhaps about unseen events) by
positing a model that describes the random variability of the data
around the deterministic model.

Lambert (2000)



Perspectives are NOT incompatible

• Statistical/probabilistic ideas are central to recent work on developing
improved randomized algorithms for matrix problems.

• Intractable optimization problems on graphs/networks yield to
approximation when assumptions are made about network participants.

• In boosting (a statistical technique that fits an additive model by
minimizing an objective function with a method such as gradient descent)
the computation parameter (i.e., the number of iterations) also serves as
a regularization parameter.



Sponsored (“paid”) Search
Text-based ads driven by user query



Sponsored Search Problems

Keyword-advertiser graph:
– provide new ads
– maximize CTR, RPS, advertiser ROI

“Community-related” problems:
• Marketplace depth broadening:

find new advertisers for a particular query/submarket

• Query recommender system:
suggest to advertisers new queries that have high probability of clicks

• Contextual query broadening:
broaden the user's query using other context information



Micro-markets in sponsored search

10 million keywords
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What is the CTR and
advertiser ROI  of sports

gambling keywords?

Goal: Find isolated  markets/clusters with sufficient money/clicks with sufficient coherence.
Ques: Is this even possible?



What do these networks “look” like?



Questions of interest ...

What are degree distributions, clustering coefficients, diameters, etc.?
Heavy-tailed, small-world, expander, geometry+rewiring, local-global decompositions, ...

Are there natural clusters, communities, partitions, etc.?
Concept-based clusters, link-based clusters, density-based clusters, ...

(e.g., isolated micro-markets with sufficient money/clicks with sufficient coherence)

How do networks grow, evolve, respond to perturbations, etc.?
Preferential attachment, copying, HOT, shrinking diameters, ...

How do dynamic processes - search, diffusion, etc. - behave on networks?
Decentralized search, undirected diffusion, cascading epidemics, ...

How best to do learning, e.g., classification, regression, ranking, etc.?
Information retrieval, machine learning, ...



Clustering and Community Finding

• Linear (Low-rank) methods
If Gaussian, then low-rank space is good.

• Kernel (non-linear) methods
If low-dimensional manifold, then kernels are good

• Hierarchical methods
Top-down and botton-up -- common in the social sciences

• Graph partitioning methods
Define “edge counting” metric -- conductance, expansion,

modularity, etc. -- in interaction graph, then optimize!

“It is a matter of common experience that communities exist in networks ... Although not precisely
defined, communities are usually thought of as sets of nodes with better connections amongst its
members than with the rest of the world.”



Community Score: Conductance
S

S’

12

 How community like is a set of
nodes?

 Need a natural intuitive
measure:

 Conductance (normalized cut)
φ(S) = # edges cut / # edges inside

 Small φ(S) corresponds to more
community-like sets of nodes



Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?
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Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

Bad
community
φ=5/6 = 0.83

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?
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Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

Better
community

φ=5/6 = 0.83

Bad
community

φ=2/5 = 0.4

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?
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Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

Better
community

φ=5/6 = 0.83

Bad
community

φ=2/5 = 0.4

Best
community
φ=2/8 = 0.25

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?
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Network Community Profile Plot

 We define:
Network community profile (NCP) plot

Plot the score of best community of size k

• Search over all subsets of size k and
find best: φ(k=5) = 0.25

• NCP plot is intractable to compute
• Use approximation algorithms

17



Widely-studied small social networks

Zachary’s karate club Newman’s Network Science



“Low-dimensional” graphs (and expanders)

d-dimensional meshes RoadNet-CA



What do large networks look like?

Downward sloping NCPP

small social networks (validation)

“low-dimensional” networks (intuition)

hierarchical networks (model building)

Natural interpretation in terms of isoperimetry

implicit in modeling with low-dimensional spaces, manifolds, k-means, etc.

Large social/information networks are very very  different
We examined more than 70 large social and information networks

We developed principled methods to interrogate large networks

Previous community work: on small social networks (hundreds, thousands)



Large Social and Information Networks



Approximation algorithms as
experimental probes?

The usual modus operandi for approximation algorithms for general problems:

• define an objective, the numerical value of which is intractable to compute

• develop approximation algorithm that returns approximation to that number

• graph achieving the approximation may be unrelated to the graph achieving the
exact optimum.

But, for randomized approximation algorithms with a geometric flavor (e.g. matrix
algorithms, regression algorithms, eigenvector algorithms; duality algorithms, etc):

• often can approximate the vector achieving the exact solution

• randomized algorithms compute an ensemble of answers -- the details of which
depend on choices made by the algorithm

• maybe compare different approximation algorithms for the same problem.



Probing Large Networks with
Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning
problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses “long paths” with “deep cuts”

Multi-commodity flow - (log(n) approx) - difficulty with expanders

SDP - (sqrt(log(n)) approx) - best in theory

Metis - (multi-resolution for mesh-like graphs) - common in practice

X+MQI - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically, regularized communities!)

We are not interested in partitions per se, but in probing network structure.



Analogy: What does a protein look like?

Experimental Procedure:

• Generate a bunch of output data by using
the unseen object to filter a known input
signal.

• Reconstruct the unseen object given the
output signal and what we know about the
artifactual properties of the input signal.

Three possible representations (all-atom;
backbone; and solvent-accessible surface)
of the three-dimensional structure of
the protein triose phosphate isomerase.



Typical example of our findings
General relativity collaboration network

(4,158 nodes, 13,422 edges)
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Large Social and Information Networks

LiveJournal Epinions

Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of
whiskers), and black (randomly rewired network) for consistency and cross-validation.



More large networks

Cit-Hep-Th Web-Google

AtP-DBLP Gnutella



NCPP: LiveJournal (N=5M, E=43M)
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Community size

Better and
better

communities
Best communities get

worse and worse

 Best community
has ≈100 nodes
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“Whiskers” and the “core”

• “Whiskers”

• maximal sub-graph detached
from network by removing a
single edge

• contains 40% of nodes and 20%
of edges

• “Core”

• the rest of the graph, i.e., the
2-edge-connected core

• Global minimum of NCPP is a whisker

NCP plot

Largest
whisker

Slope upward as
cut into core



What if the “whiskers” are removed?

LiveJournal Epinions

Then the lowest conductance sets - the “best” communities - are “2-whiskers.”

(So, the “core” peels apart like an onion.)



Lower Bounds ...

... can be computed from:

• Spectral embedding

(independent of balance)

• SDP-based methods

(for volume-balanced partitions)



NCPP for common generative models

Preferential Attachment Copying Model

RB Hierarchical Geometric PA



A simple theorem on random graphs

Power-law random graph with β ε (2,3).

Structure of the G(w) model, with β ε (2,3).

• Sparsity (coupled with randomness)
is the issue, not heavy-tails.

• (Power laws with β ε (2,3) give us
the appropriate sparsity.)



A “forest fire” model

At each time step, iteratively add
edges with a “forest fire” burning
mechanism.

Model of: Leskovec, Kleinberg, and Faloutsos 2005

Also get “densification” and “shrinking
diameters” of real graphs with these
parameters (Leskovec et al. 05).



Comparison with “Ground truth” (1 of 2)

Networks with “ground truth” communities:

• LiveJournal12:
• users create and explicitly join on-line groups

• CA-DBLP:
• publication venues can be viewed as communities

• AmazonAllProd:
• each item belongs to one or more hierarchically organized
categories, as defined by Amazon

• AtM-IMDB:
• countries of production and languages may be viewed as
communities (thus every movie belongs to exactly one
community and actors belongs to all communities to which
movies in which they appeared belong)



Comparison with “Ground truth” (2 of 2)

LiveJournal CA-DBLP

AmazonAllProd AtM-IMDB



“Structure” and “randomness” in
very large informatics graphs

Some high-level themes to formalize:
• There do not exist a “small” number of linear components that capture
“most” of the variance/information in the data.

• There do not exist “nice” manifolds that describe the data well.

• There is “locally linear” structure or geometry on small size scales
that does not propagate to global/large size scales.

• At large size scales, the “true” geometry is more “hyperbolic” or
“tree-like” or “expander-like”.

Important: even if you do not care about communities, conductance,
etc., these empirical observations place very severe constraints on the
types of models that are appropriate to consider.

Mahoney and Leskovec (2009)



“Learning” with Spectral Kernels and
Heavy-Tailed Data

Recall the usual story:
• The sample complexity for distribution-free learning typically depends
on the ambient dimension to which the data to be classified belongs.

• For very high-dimensional data, such bounds can be unsatisfactory,
motivating discussions of manifolds, etc.

Motivated by informatics graphs, we have several novel issues:
• Heavy-tailed distributions of degrees, eigenvalues, etc.

• Spectral (especially local spectral) kernels good for denoising, etc.

• Data are naturally modeled by a graph, not a feature vector.

Mahoney and Narayanan (2009)



“Learning” with Spectral Kernels and
Heavy-Tailed Data

Heavy-tailed data – e.g., graphs with heavy-tailed degree distributions
• A small number of big guys, but many many little guys at every lower

scale, so neither dominates.

Spectral Kernels - e.g., Laplacian Eigenmaps, diffusion maps, etc.
• Construct kernel from eigenvalues/eigenfunctions graph Laplacian.
• Entries of eigenvectors (and thus of the kernel) are NOT uniformly

bounded in general since they may be localized.

In both cases:
• Dstbn-indep VC arguments give trivial dimension-dependent results.
• Can use dstbn-dependent annealed entropy to provide dimension-indep

learning bounds!

Mahoney and Narayanan (2009)



Conclusions
Approximation algorithms as experimental probes!

• Hard-to-cut onion-like core with more structure than random

• Small well-isolated communities gradually blend into the core

Community structure in large networks is qualitatively different!

• Agree with previous results on small networks

• Agree with sociological interpretation (Dunbar’s 150 and bond vs. identity)!

Common generative models don’t capture community phenomenon!

• Graph locality - important for realistic network generation

• Local regularization - important due to sparsity


