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Example: A computational challenge 
in applied geoscience 

Seismic inversion History matching 

Seismic data Oil production data 
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Seismic Inversion 

Numerical 
solution of 
wave equations 

Optimization 
of data fit 

Seismic data Impedance/Porosity model 
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History Matching 

Numerical 
solution of 
flow equations 

Optimization 
of data fit 

Porosity, permeabillity/ 
saturation model 

Production data 
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Computation time vs. number of unknowns 
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Combining Seismic Inversion and 
History Matching 

Separate calculations 
Acceptable computation times 
add up 

Combined calculation 
Computation time explodes! 
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Plan for the talk 

We will investigate limitations for algorithms used in 
large-scale data fitting problems when 
1. problem independent algorithms (metaheuristics) are 
used  
2. the algorithms are adapted to special properties of the 
problem  

We will propose a way of avoiding hard problems  
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Overall conclusions of the talk 

Waiting for faster computers? 
No. Faster computers will not significantly improve our 
ability to solve hard problems. 
Waiting for smart algorithms (metaheuristics)? 
No – there are fundamental limitations to the 
performance of any of these algorithms. 
Using more problem-specific algorithms? 
Yes – the more problem specific, the better. 

Hard data-fitting problems: How do we make progress? 
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Consider the case where certain properties of 
the fit functions is known by the algorithm 

Here, the number of  
parameters needed to 
characterize f grows 
exponentially with N 

Assume that f can be 
expanded with respect 
to a set of base functions, 
centered in a grid of points  

Example: 

© K. Mosegaard (2009) 



The number of parameters KN needed to 
characterize a smooth fit function in an N-
dimensional space grows exponentially with N. 

Consequently, the solution time for the best 
conceivable algorithm grows exponentially with N.  

Using Brouwer’s theorem on Invariance of 
dimension (Brouwer ~1910), we can conclude that 
at least KN function evaluations are needed to 
locate an extremum. 

The chain of reasoning 

Some algorithms are better than others, but all 
algorithms will have exponential-time complexity 
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Consider the case where the fit function is 
known to be a Gaussian of unknown shape 

A Gaussian over an N-
dimensional space M is 
characterized by the N 
components of its mean 
vector, and the N (N+1)/2 
components of its 
covariance matrix. 

The family of Gaussians over an N-dimensional  
space is a manifold of dimension 

N + N (N+1)/2 
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At least N + N(N+1)/2 function evaluations are 
required to characterize (“reconstruct”) an N-
dimensional Gaussian. 

Consequently, the best conceivable algorithm 
needs N + N(N+1)/2 function evaluations to 
locate the maximum of an N-dimensional 
Gaussian!  

The problem is polynomial (easy). 
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For instance: Replace hard calculations with easy (but 
approximate) calculations! 

The conclusion to our analysis is: 
Problem-specific algorithms are needed 

`Faking’ one of the solutions:  
Computation times under 
control! 
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Combined geoscientific 
calculation: 
Computation time explode! 
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Replacing a hard problem with an easy one 

Seismic inversion 
(hard, accurate) 

Seismic pseudo-inversion 
(easy, approximate) 
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Learning/Non-linear Regression 

Seismic data s(x,y,t) 

Crude reservoir model m(x,y,z) 

m = F(s) 

If we know F at the N well sites: 

m(x1,y1,z) = F(s(x1,y1,t)) 
m(x2,y2,z) = F(s(x2,y2,t)) 
… 
m(xN,yN,z) = F(s(xN,yN,t)) 

we may be able to compute F 
and predict m from s everywhere  

F 
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Example: Seismic Pseudo-inversion 
Porosity predicted from distant well data and a few seismic  
attributes using non-linear regression 

From: Hansen et al., 2008 and Pedersen-Tatalovic et al., 2008 © K. Mosegaard (2009) 



Conclusions 

1.  Data analysis in engineering and science is 
often an overwhelming computational 
challenge 

2.  Faster computers and smarter meta-heuristics 
will not significantly improve our ability to solve 
such problems 

3.  More problem-specific algorithms will be 
necessary. A way forward may be to use fast, 
approximate methods for most of the work. 
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