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Example: A computational challenge
in applied geoscience

Seismic data Oil production data
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Seismic Inversion

Seismic data Impedance/Porosity model

Optimization
of data fit

Numerical
solution of
wave equations
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Production data

History Matching

Porosity, permeabillity/
saturation model
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Computation time vs. number of unknowns

Computation

time
A

Hard (exponential)
Easy
(polynomial)
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Dimension of
model space
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Combining Seismic Inversion and
History Matching

Separate calculations Combined calculation
Acceptable computation times Computation time explodes!
add up
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Plan for the talk

We will investigate limitations for algorithms used in
large-scale data fitting problems when

1.problem independent algorithms (metaheuristics) are

used

2.the algorithms are adapted to special properties of the
problem

We will propose a way of avoiding hard problems
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Overall conclusions of the talk

Hard data-fitting problems: How do we make progress?

Waiting for faster computers?
No. Faster computers will not significantly improve our
ability to solve hard problemes.

Waiting for smart algorithms (metaheuristics)?
No - there are fundamental limitations to the
performance of any of these algorithmes.

Using more problem-specific algorithms?
Yes — the more problem specific, the better.
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Formulation of the data fitting (inversion) problem

Data analysis in Science and engineering usually involves solution
of an inverse problem, which again means solving a set of
equations.

» Each datum provides a constraint in form of one equation
d; = gi(m).

» We seek to find an approximate, simultaneous solution to all
these equations by minimizing a misfit function like

S(m) = ||d — g(m)|*.
or maximizing a fit function like

fam) = exp (31 - gam)]*)
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Minimizing a misfit function: can we measure the
performance of the many available algorithms?

Steepest descent
Simulated Annealing
Genetic Algorithm

Taboo Search
Neighbourhood Algorithm

vV v v . v v Y

To answer this question, we need to describe exactly the conditions
we work under.
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The blind search scenario

» |n this scenario we have no closed-form mathematical
expression for the right-hand-side of

d; = gi(m).

» We only have a programme that is able to evaluate g;(m)
for given values of the parameters in m.

In short:

We are performing a blind search for the solution.
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Notation (in a fully discrete formulation)

» Two finite sets X and Y,

» The set Fx of all fit functions/probability distributions
f: X->Y.

Y f:X—>Y
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Notation

» A sample of size m < |X|:

{(X17 y1)7 R (Xma ym)}

> The set Fy|c of all fit functions/probability distributions
defined on X, but with fixed values in C.

Y fiX—>Y
O O O O O o O o o o
O O O O O O O O o
O O O (@) (@) O O O O O
O O O O O o o (@)
O O O (@) (@) O o N‘
O O O (@) (@) O O O O (@) X

© K. Mosegaard (2009)



Lemma

The total number of functions intersecting the m samples is

Fxjel = [Y X7, (1)

This number is independent of the location of the sample points.
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No-Free-Lunch Theorem (Wolpert and Macready, 1995)

Theorem

NFL (Wolpert and Macready, 1995) For f € Fx and any pair
of algorithms a1 and as,

P(yla'”?ym‘famaal):P(yla'”?ym‘fam)aZ) (2)

where P(-|-) denotes conditional probability.
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Since any performance measure for inversion is a function of form
® Y™ — R, for instance:

(I)(y17°"7ym) — max{yla'”)ym}a (3)

which must be large for good performance, the NFL Theorem
implies the following:

Corollary

(NFL for optimization) The distribution of any performance
measure for inversion, when all fit functions are equally probable
(blind inversion), is exactly the same for all inversion algorithms.
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A serious objection to the NFL theorem

Postulate
“The No-Free-Lunch theorem essentially assumes that the fit

functions i1s white noise, and this is unrealistic”.

So, in real cases the situation is different from the NFL-scenario:

We have a narrow set of (e.g. smooth) fit functions.

This objection is based on the reasoning that the total number of
ways a particular set of fit values y1,...,y,, can be obtained in a
particular set of m sample points X = {x1,...,X;,} will in general
depend on the location of these points.
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Consider the case where f is ‘noise of unknown color’

Averaging over all possible fit function families (‘colors’) gives:

Lemma

Consider all possible subfamilies of functions with fixed values on
the sampled subset C' € X. The total number of functions in all

these families (counting some functions more than once) depends

only on the number m of elements in C', and not on the elements
themselves.
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Since the search algorithm only manifests itself through the
selection of elements in C, we have

Corollary

The efficiency of all blind inversion schemes are exactly the
same. [he expected performance over all ‘colored’ fit function
families is the same for all inversion algorithms.

Proof. (Similar to the original NFL theorem) B
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Conclusion

The efficiency of all blind inversion schemes:
» Simulated Annealing,
» Metropolis Algorithm,
» Genetic Algorithm,
» Taboo Search,
» Neighbourhood Algorithm,

> ...

when averaged over alle possible classes of inverse problems, are
exactly the same.
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Consider the case where certain properties of
the fit functions is known by the algorithm

id of points

the number of
parameters needed to
characterize f grows

expanded with respect
to a set of base functions,

centered ina gr

Assume that f can be
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The chain of reasoning

The number of parameters Ky needed to
characterize a smooth fit function in an N-
dimensional space grows exponentially with N.

Using Brouwer’s theorem on Invariance of
dimension (Brouwer ~1910), we can conclude that
at least K, function evaluations are needed to
locate an extremum.

Consequently, the solution time for the best
conceivable algorithm grows exponentially with N.

Some algorithms are better than others, but all
algorithms will have exponential-time complexity
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Consider the case where the fit function is
known to be a Gaussian of unknown shape

A Gaussian over an N-
dimensional space M is
characterized by the N
components of its mean
vector, and the N (N+1)/2
components of its
covariance matrix.

The family of Gaussians over an N-dimensional
space is a manifold of dimension
N+ N (N+1)/2
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At least N + N(N+1)/2 function evaluations are

required to characterize (“reconstruct™) an N-
dimensional Gaussian.

Consequently, the best conceivable algorithm
needs N + N(N+1)/2 function evaluations to
locate the maximum of an N-dimensional
Gaussian!

The problem is polynomial (easy).
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The conclusion to our analysis is:
Problem-specific algorithms are needed

For instance: Replace hard calculations with easy (but
approximate) calculations!

Combined geoscientific "Faking’ one of the solutions:
calculation: Computation times under
Computation time explode! control!
A ' A
| |
E :
i~ =
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N, N’ # param. N, N, # param.
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Replacing a hard problem with an easy one

Seismic inversion Seismic pseudo-inversion
(hard, accurate) (easy, approximate)
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Learning/Non-linear Regression

m = f{(s)

If we know F at the N well sites:

m(x,y,z) = F(s(x,y,t)
m(x,,y,,z) = F(s(x,yt)

m(x,,Yn2) = F(s(Xyypnt)

we may be able to compute
and predict m from s everywhere

Crude reservoir model m(x,y,z)
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Example: Seismic Pseudo-inversion

Porosity predicted from distant well data and a few seismic
attributes using non-linear regression

W1 W‘,2 W3 W4 W5

From: Hansen et al., 2008 and Pedersen-Tatalovic et al., 2008 ¢ k. mosegaard (2009)



Conclusions

1.

Data analysis in engineering and science is
often an overwhelming computational
challenge

Faster computers and smarter meta-heuristics
will not significantly improve our ability to solve
such problems

. More problem-specific algorithms will be

necessary. A way forward may be to use fast,
approximate methods for most of the work.
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